Principle of oxygen therapy in the newborn

Thrathip Kolatat M.D.
Neonatal Intensive Care Unit
Department of Pediatrics
Faculty of Medicine Siriraj Hospital
Oxygen

The most common drugs used in NICU

Goal

to achieve adequate delivery oxygen to tissues without creating oxygen toxicity
Oxygen

The biomedical double-edged sword

- energy source of cellular life
- risk for oxygen toxicity

There must be an oxygen pressure at which biological activity is optimal
Physiologic consideration

- External respiration
 - transfer oxygen molecules from the atmosphere to blood
- Blood oxygen transport
 - movement of oxygen from blood to the site of intracellular utilization
- Internal respiration
 - oxygen consumption
External respiration

- definition: transfer oxygen molecules from atmosphere to the blood
- factors influence external respiration
 - fraction of inspired oxygen
 - distribution of ventilation
 - alveolar gas exchange
 - mixed venous-oxygen content
Unloading oxygen capability (Term and Preterm)

Term

Preterm 1000-1500 g.
Blood oxygen transport

- definition: movement of oxygen from the blood to the site of intracellular utilization
- factors influence blood oxygen transport
 - cardiac output
 - hemoglobin concentration
 - hemoglobin oxygen affinity
Factors affected oxygen transport

- amount of oxygen in blood
 - hemoglobin concentration
 - partial pressure of oxygen
 - oxygen-hemoglobin affinity
- delivery of oxygen
 - blood pressure and blood volume
 - cardiac output and distribution of flow
 - viscosity
- abnormalities in cellular metabolism
 - increased oxygen requirement e.g. hyperthermia, hypothermia
Hemoglobin-oxygen dissociation curve

- **Shift to the left**
 - increased oxygen affinity
 - less oxygen delivering to the tissue
 - increased oxygen content

- **Shift to the right**
 - decrease oxygen transport capability
 - enhance movement of oxygen from blood to tissue
 - decrease oxygen supply to tissue
 - decrease oxygen content
Hemoglobin-oxygen dissociation curve
Blood oxygen transport

- oxygen content (OC)
 - amount of hemoglobin
 - hemoglobin-oxygen dissociation curve
- \(OC = \text{oxy hemoglobin} + \text{dissolved oxygen} \)

Side chains:
- Methyl, -CH\(_3\)
- Vinyl, -CH-CH\(_2\)
- Propionic acid, -CH\(_2\)-CH\(_2\)-COOH
Internal respiration

- definition: oxygen consumption
- factors influence internal respiration
 - capillary perfusion
 - diffusion of oxygen to tissue
 - tissue oxygen utilization
Oxygen tension in cord blood and arterial blood at different postnatal age
Method to delivery oxygen

- simple oxygen mask
- oxygen cannula
- oxygen hood
- oxygen box
- oxygen via incubator
- continuous positive airway pressure (CPAP)
Oxygen mask and cannula

- **Simple oxygen mask**
 - apply in an emergency situation
 - provide a concentration of 50-90%
 - recommended flow 3-6 LPM

- **Oxygen cannula**
 - provide a fixed concentration which vary on flow rate
 - require a specific type of flow meter
Oxygen hood

- provide a stable concentration, visibility and access to most of the body
- recommend for acutely ill or unstable infants who require a $\text{FiO}_2 > 0.40$
- a minimum flow rate of 3 LPM is recommended in order to prevent CO_2 retention
Oxygen box

- provide a stable concentration, visibility and access to most of the body
- recommend for a $\text{FiO}_2 < 0.40$
- suitable for a chronically ill or stable infant in the crib
Oxygen via incubator

- provide a stable concentration, visibility and access to most of the body
- recommend for a FiO2 < 0.40
- recommend for a stable infant in the incubator
Oxygen monitoring

Oxygen analyzer

Arterial PaO$_2$ VS Oxygen saturation
Oxygen monitoring

- \(\text{PaO}_2 \)
- transcutaneous oxygen monitoring (\(\text{SpO}_2 \))
- oxygen content
 - \(\text{PO}_2 \) 100 mm Hg hemoglobin carries approx. 100 times more oxygen in plasma
 - 2 components of oxygen load
 - oxygen bound to hemoglobin
 - (1g. of Hb binds 1.34 ml. oxygen)
 - oxygen dissolved in plasma
 - (0.3 ml \(\text{O}_2 \)/100 ml)
Arterial PaO$_2$

- tissue oxygenation depends on PaO$_2$ or the saturation between tissue and blood
- in term of the saturation, change from fetal hemoglobin to adult hemoglobin should be considered in the newborn infants
 - naturally occurred
 - repeated transfusion during intensive care period
Oxygen saturation

- limitation to detect hyperoxia (\(\text{PaO}_2 > 12 \text{ kPa}; \text{SpO}_2 > 97\%\))
- sensitive to detect tissue hypoxemia when \(\text{PaO}_2\) is at the critical level (\(\text{PaO}_2\) is on the steep portion of the curve)
Oxygen saturation: limitation and recommendation

- no definite criteria for hypoxia
- to avoid hypoxia, saturation should be kept at the level of \(\text{PaO}_2 \) 50 kPa
- saturation should be intermittently compared with \(\text{PaO}_2 \) obtained from ABG
- lower acceptable limit of saturation: 85%
- upper acceptable limit of saturation: 97%
Oxygen saturation

- **advantages**
 - noninvasive
 - rapid response time
 - no tissue damage
 - sensitive to detect hypoxia

- **disadvantages**
 - varied with patient activity
 - influenced by edema, phototherapy, perfusion
 - insensitive to detect hyperoxia
Complications

- burns
- factors influence
 - skin maturation
 - tightness
 - duration of probe attachment
Oxygen toxicity
Development of oxygen radical defense systems

- Concentration of oxygen scavengers and antioxidant enzymes increase in lungs and kidney during pregnancy.
- Level of total antioxidant was lower in the preterm infants than the adult or term infants.
- VLBW infants have a higher capacity to produce oxygen radicals by the respiratory burst than term infants.
Oxygen free radical reperfusion injury

- accumulation of lipid peroxidation products following reperfusion
- protection by the administration of nonenzymatic antioxidants including vitamin E, glutathione, dimethylsulfoxide or enzymatic antioxidants
- the direct identification of free radicals by electron spin resonance spectroscopy
Actions of free radicals

Role of hypoxanthine - xanthine oxidase system

- hypoxanthine is the end product of the purine catabolism in most human organs
- hypoxanthine is a break down product from ATP, AMP
- during hypoxia, hypoxanthine is accumulated
- when hypoxanthine is oxidized to uric acid, oxygen radicals are formed
Mechanism for ischemia/reperfusion injury

ischemia

ATP

AMP

hypoxanthine

XD

protease

XO

$O_2^- + H_2O_2 + urate$

oxygenation
Oxygen toxicity

Neonatal free radical disease

- respiratory tract: bronchopulmonary dysplasia
- retina: retinopathy of prematurity
- brain: intraventricular hemorrhage, PV L
- gastrointestinal tract: necrotizing enterocolitis
- KUB: acute tubular necrosis
Oxygen free radicals

\[\text{O}_2 + 4 \text{H}^+ + 4 \text{e} \rightarrow 2 \text{H}_2\text{O} \]

\[\text{O}_2 + \text{e}^- \rightarrow \text{O}_2^- \quad \text{(superoxide radical)} \]

\[\text{O}_2 + \text{e}^- \rightarrow \text{H}_2\text{O}_2 \quad \text{(hydrogenperoxide)} \]

\[\text{H}_2\text{O}_2 + \text{e}^- \rightarrow .\text{OH} \quad \text{(hydroxyl radical)} \]

\[.\text{HO} + \text{e}^- \rightarrow \text{H}_2\text{O} \quad \text{(water)} \]
Chemical mechanism of oxygen toxicity

Principle mechanism

- univalent reduction of molecular oxygen
- formation of free radical intermediates

Reactive O$_2$ metabolites

- Superoxide free radical (O$_2^-$)
- Hydrogen peroxide (H$_2$O$_2$)
- Hydrogen free radical (OH$^-$)
- Singlet oxygen (1O$_2$)
Actions of free radicals

- injure biological membranes by lipid peroxidation
- inactivate enzyme
- denature proteins
- break double strand of DNA
Antioxidant enzyme defense system

- Superoxide dismutase (SOD) detoxified O_2^-
- Catalase detoxified H_2O_2
- Glutathione peroxidase (GP) detoxified H_2O_2
- G-6-PD provided NADPH reduced glutathione
Actions of free radicals

Role of Iron

• nutritional iron deficiency in premature infants may be protective in oxygen radical-mediated injury

• lactoferrin and transferrin-like-iron-binding protein present in breast milk may have protection from oxygen radical injury

• low serum level of apotransferrin and ceruloplasmin in the premature infants may potentiate this type of injury
Actions of free radicals

Role of the activated leukocyte

- On exposure to bacteria, the oxygen uptake of neutrophils is increased as much as 50-fold
- A large amount of superoxide and hydrogen peroxide radicals are formed
- Leukocytes attack bacteria with oxygen radicals
- This phenomenon is called respiratory burst
Effects of alveolar macrophage

Exposure to prolonged high inspired oxygen

- influx of polymorphonuclear leukocytes
- impaired antiprotease defense system
- release of proteolytic enzyme
- proteolytic damage in alveolar wall
Pulmonary change of oxygen toxicity

- atelectasis (surfactant inactivation)
- edema
- alveolar hemorrhage
- inflammation
- fibrin deposition
- thickening and hyalinization of alveolar membrane
- tracheal, bronchiolar and type 1 alveolar lining cells were damaged
Free radical scavengers and antioxidants

Antioxidants

- vitamin E
- bilirubin
Free radical scavengers and antioxidant enzymes

Free radical scavengers

- mannitols
- superoxide dismutase
- bilirubin
- uric acid
- dimethyl sulfoxide
Factors that determine oxygen toxicity

- maturation
- nutritional and endocrine status
- duration of exposure to oxygen
- other oxidants

A safe level of inspired oxygen has not been established, any concentration in excess of room air may increase the risk of lung damage when administered over a period of time.
Policy for preventing ROP

- All infants who are at risk will be monitored with an oxygen saturation monitor.
- The upper limits for the monitor alarm will be routinely set at 95%.
- Daily attempts should be made to lower the FiO2 in stable, convalescing infants with O2 saturations in the low to mid 90’s.
- Correlating arterial samples will be obtained/attempted twice weekly.
ROP: oxygen monitoring policy

- administer oxygen via a hood as a primary mode of delivery for infants < 1500 g
- use oximetry to determine the optimum flow and distance from the face when using short term blow by O₂.
- monitor infants at risk by setting a strict upper limit for the oximeter of 95%
- If possible a calibration PaO₂ should be obtained twice weekly; simultaneous FiO₂, SaO₂ and PaO₂ will be recorded
ROP: oxygen monitoring policy

- obtain an arterial blood gas when an "at-risk" infant who was previously in room air is retreated with oxygen.
- if the arterial PaO₂ > 90 mm Hg, notify a physician and document the response
- adjust FiO₂ based on ordered parameters using oximetry and/or transcutaneous monitoring.
- ensure that an ROP check has been done at six weeks of age on infants ≤1500 g.
Prognostic factors

- **P(A-a)O\(_2\)** difference
 - in infants with PPHN, the mortality was 79% if P(A-a)O\(_2\) was equal to 610 mm Hg for 8 consecutive hrs

- **Oxygen index (OI)**
 - definition: MAP x FiO\(_2\)/ PaO\(_2\)
 - OI>40: 80% mortality
 - OI>25: 50% mortality
Alveolar-arterial oxygen pressure difference

- determine ventilation/perfusion (V/Q) mismatch
- normal value for adult in RA: 10-20 mm Hg
- normal value in the neonate
 - 40-50 mm Hg at birth
 - 300 mmHg (FiO₂ 1.0)
Alveolar-arterial Oxygen Pressure Difference

- $P(A-a)O_2$ – alveolar-arterial oxygen pressure difference
 - correlate with severity of lung disease
 - method of calculation
 - $PAO_2 = [FiO_2 \times (P_{\text{atm}} - P_{H_2O})] - PCO_2$
- Exp. $PaO_2 = 673$ mm Hg
 (FiO$_2$ 1.0; PCO$_2$ 40 mmHg)
Etiology of high P(A-a)O$_2$ difference

- diffusion block at the alveolar-capillary level
- V/Q mismatch in the lung
 - a result of ventilated areas poorly perfusion
 - perfused areas poorly ventilated intracardiac
- fixed right-to-left shunt
Graph for estimation the shunt at different inspired oxygen